Skip to Main Content

Manage & Share Research Data

Tips & tools to help student researchers manage research data & information with less stress

What is research data management (RDM)?

Research data management (RDM) is a set of practices that make it easier for researchers to find and use data for their research projects when they need it. RDM is like brushing your teeth and flossing to prevent cavities.

Because we have high expectations about the integrity, validity, and reliability of research results, the daily data management practices are very important to the outcomes of research. RDM includes all activities performed while handling data generated or gathered as part of a research project. While good data management practices supports good research outcomes, poor data management practices can make data unusable and lead to the failure of a project. RDM includes decisions and practices relating to:

  • what data is generated or gathered for reuse
  • how data is organized
  • where to store it
  • how to document and describe it
  • how to process it
  • knowing your legal and ethical obligations for protecting and/or sharing it
  • choosing what data to archive and discard
  • where, how, and with whom to share your data
  • how to cite your data in reports and publications

Good data practices

Universal good data practices 

While specific strategies for managing data differ between fields of research, like research design, methods, and expectations for research integrity can vary, there are some good data practices that apply across all types of research. These include the following:

  • Develop a Data Management and Sharing Plan (DMSP) that documents your obligations and plans
  • Know your obligations with respect to data management and sharing
    • Legal requirements - international, federal, state, local
    • Ethical obligations of your professional and/or research communities
    • Funder or sponsor
    • Institution(s)
    • Publisher or journal
  • Know what you want to do with the data
    • What analyses do you need to run to answer your research questions?
    • Do you want or need to share the data? With whom? Where and how? When?
  • Use of data management and sharing plans to ensure consistency in practices such as file naming, storing data securely, data curation, data retention and disposal, etc.
  • Adopt and implement relevant data and metadata standards, such as the FAIR Guiding Principles and the CARE Principles for Indigenous Data Governance

 

Other good research practices that effect data practices (usually the responsibility of the Lead/Principal Investigator)

  • Set clear expectations for research personnel as documented in team/lab manuals, including designation of responsibilities
  • Maintain project/study documentation that is accessible by all project/study personnel
  • All research personnel take responsibility for the trustworthiness of the research
  • Determine the constraints of your technological resources and recognize when external expertise (beyond the research team) is necessary, particularly when related to cybersecurity, contracts or licenses, and data curation

Why should I care about research data management?

Data is a key piece of the scholarly record. This means that the way you manage your research data has an impact on the accuracy and integrity of the research record (i.e., scholarly literature including journal articles, conference posters & presentations, abstracts, etc.). Since the scholarly literature is used to inform new areas for research, whether data are managed well can effect the potential for data curation, sharing, and reuse or secondary analysis. This is recognized by the Office of Research Integrity, the National Academies of Science, federal funding agencies requiring data management plans, and initiatives like FORCE11. Kenneth Pimple describes data management as “the neglected, but essential, twin to the ‘scientific method.’”

Source: Coates, H. (2014). Ensuring research integrity: The role of data management in current crises. College & Research Libraries News, 75(11), 598-601. https://doi.org/10.5860/crln.75.11.9224

Reproducibility & Replicability

Data management is an important part of the conversations about challenges in reproducing and/or replicating published results. Many areas are facing these challenges, such as psychology, cancer research, cell biology and more, though the specific issues differ by the field of research. Advancing our understanding of the world requires an accumulation of evidence from more than one study. Another way of saying it is that one study does not prove a theory. Many studies producing consistent data and results are necessary for a theory to be accepted as the most likely explanation.

Comparing, aggregating, and analyzing data across multiple studies requires that data are accessible, interoperable, defined, well-documented, and citable. One approach to describing and making these ideas practical are the FAIR Guiding Principles, which are: Findable, Accessible, Interoperable, and Reusable.

Open Data & Open Science